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• Favour “simple models”
• Easier interpretation, cheaper post-processing
• Models with few parameters, feature selection

• Applications:
• Compressed sensing [Candes and Tao, 2005]
• Graphical models [Meinshausen and Bühlmann, 2006]
• Signal/image processing tasks

• E.g., denoising [Chen et al., 1998; Mairal, 2010]

• Disregards structure:
• Prior knowledge only about cardinality
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Structure? The example of neuroimaging

• In practice, know more than just cardinality!

• Sparsity comes with structural information

• Spatial structure in neuroimaging [Chklovskii and Koulakov,
2004; Gramfort et al., 2011]

• Sparsity: few discriminative voxels
• Spatiality: clusters according to the geometry of the brain
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Structure? Other motivating examples

• Spatial:
• Bioinformatics: contiguity due to the genome

organization [Rapaport et al., 2008]
• Image segmentation: neighboring pixels [Boykov et al., 2001]

• Temporal:
• Time series of gene expressions [Tibau Puig et al., 2011]

• Hierarchical:
• NLP: hierarchical selection of templates [Martins et al., 2011]
• Graphical models: potential orders of interactions [Schmidt

and Murphy, 2010]
• Wavelet: zero-tree coding [Shapiro, 1993]

• Physics of the sensors:
• Multipath radar signals [Rebafka et al., 2011]



Some questions addressed by the thesis

• Within a convex framework. . .

• How to take into account structure while inducing sparsity?

• Which structures can be considered?

• Statistical properties of the resulting estimators?

• Can we design efficient algorithms for practical problems?

• Do we observe improvements in applications?



Contribution 1
Topic of Part I

• New family of structured sparsity-inducing norms

• Analysis of
• Type of structures which can be encoded
• Automatic norm design
• Statistical property: low- and high-dimensional consistency

Related publication:
R. Jenatton, J.-Y. Audibert, F. Bach. Structured Variable Selection with Sparsity-Inducing Norms. In Journal of
Machine Learning Research, 12, 2777-2824. 2011



Contribution 2
Topic of Part II

• Efficient optimization methods for structured sparsity:
• Active-set algorithms
• Reweighted-ℓ2 schemes
• Proximal-gradient techniques

• Efficient computations of proximal operator/dual norms

• Connections with operations research and network flows

Related publications:
R. Jenatton, J.-Y. Audibert, F. Bach. Structured Variable Selection with Sparsity-Inducing Norms. In Journal of
Machine Learning Research, 12, 2777-2824. 2011
R. Jenatton, G. Obozinski, F. Bach. Structured sparse principal component analysis. In International Conference
on Artificial Intelligence and Statistics (AISTATS). 2010
R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Sparse Hierarchical Dictionary Learning.
In Proceedings of the International Conference on Machine Learning (ICML). 2010
R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Hierarchical Sparse Coding. In Journal of
Machine Learning Research, 12, 2297-2334. 2011
J. Mairal∗, R. Jenatton∗, G. Obozinski, F. Bach. Network Flow Algorithms for Structured Sparsity. Advances in
Neural Information Processing Systems. 2010
J. Mairal∗, R. Jenatton∗, G. Obozinski, F. Bach. Convex and Network Flow Optimization for Structured Sparsity.
In Journal of Machine Learning Research, 12, 2681-2720. 2011 (∗equal contributions)



Contribution 3
Topic of Part III

• Sparse structured dictionary learning/matrix factorization:
• Exploit previous norms for latent models
• Learn representations adapted to structured signals
• Flexible and rich framework

• Connections with probabilistic topic models [Blei et al., 2003]

• Applications in text/image processing and computer-vision

Related publications:
R. Jenatton, G. Obozinski, F. Bach. Structured sparse principal component analysis. In International Conference
on Artificial Intelligence and Statistics (AISTATS). 2010
R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Sparse Hierarchical Dictionary Learning.
In Proceedings of the International Conference on Machine Learning (ICML). 2010
R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Hierarchical Sparse Coding. In Journal of
Machine Learning Research, 12, 2297-2334. 2011



Contribution 4
Topic of Part IV

• Applications of structured sparsity to neuroimaging

• Supervised: prediction of object sizes from fMRI signals
• Large scale problem
• Hierarchical norm to have multiscale representations of voxels
• Gain in robustness for inter-subject validation

• Unsupervised: resting-state brain activity modeling
• Sparse dictionary learning adapted to 3D structure
• Generative model for model selection and evaluation

Related publications:
R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and B. Thirion. Multi-scale Mining of fMRI Data with
Hierarchical Structured Sparsity. In International Workshop on Pattern Recognition in Neuroimaging (PRNI). 2011
R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion. Multi-scale Mining of fMRI
Data with Hierarchical Structured Sparsity. Preprint arXiv:1105.0363 Submitted to SIAM Journal on Imaging
Sciences. 2011
G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, F. Bach, and B. Thirion. Sparse Structured Dictionary
Learning for Brain Resting-State Activity Modeling. In NIPS Workshop on Practical Applications of Sparse
Modeling: Open Issues and New Directions. 2010



Other contributions

• Characterization of the local minima of sparse coding
• Work in progress with R. Gribonval and F. Bach
• Non-asymptotic analysis of existence of local minima
• Extend previous work limited to under-complete and/or

noiseless signals [Gribonval and Schnass, 2010; Geng et al.,
2011]

• Monographs about optimization for sparse models:
Related publications:
F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Convex Optimization with Sparsity-Inducing Norms. In
S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning, 2011.
F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Optimization with Sparsity-Inducing Penalties. To
appear in Foundations and Trends in Machine Learning, 2011.

• Efficient implementations for
• Sparse structured PCA
• Active-set algorithms
• Available at www.di.ens.fr/~jenatton/



Part I

Structured sparsity-inducing norms:
A guided tour



Traditional sparsity-inducing penalties

min
w∈Rp

[

f (w) + λΩ(w)
]

• f , usually a convex data-fitting term, e.g., square loss
• Ω, a regularization that encourages sparse solutions
• λ ≥ 0, regularization parameter
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• Leads to combinatorial problems [Natarajan, 1995]

• Convex relaxation via the ℓ1-norm:

Ω(w) = ‖w‖1 =
p
∑

j=1

|wj |

• For least-squares regression, Lasso [Tibshirani, 1996] and basis
pursuit [Chen et al., 1998]
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• Natural extension when variables can be grouped:

Ω(w) =
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j∈g
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]1/2
=
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g∈G

‖wg‖2, with G a partition of J1; pK

• Mixed ℓ1/ℓ2-norm [Turlach et al., 2005; Yuan and Lin, 2006]
• Can be extended to ℓ1/ℓq-norms, for q ∈ (1,∞]

• Statistical gain when relevant prior knowledge

• E.g., Stojnic et al. [2009]; Huang and Zhang [2010]

• Applications:

• Encoding categorical variables [Roth and Fischer, 2008]
• Multitask learning [Obozinski et al., 2009]
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• Ω is still a norm, Ω(w) =
∑

g∈G ‖wg‖2

• Intuitively, same behavior:
• Some groups g ∈ G will be zeroed out
• Sets of possible zero patterns and possible non-zero patterns?



Overlapping groups of variables
• Main idea: G not a partition anymore

• Ω is still a norm, Ω(w) =
∑

g∈G ‖wg‖2

• Intuitively, same behavior:
• Some groups g ∈ G will be zeroed out
• Sets of possible zero patterns and possible non-zero patterns?

Z =
{ ⋃

g∈G′

g ; G′ ⊆ G
}

and N =
{ ⋂

g∈G′

g c ; G′ ⊆ G
}



Overlapping groups of variables
• Main idea: G not a partition anymore

• Ω is still a norm, Ω(w) =
∑

g∈G ‖wg‖2

• Intuitively, same behavior:
• Some groups g ∈ G will be zeroed out
• Sets of possible zero patterns and possible non-zero patterns?

Z =
{ ⋃

g∈G′

g ; G′ ⊆ G
}

and N =
{ ⋂

g∈G′

g c ; G′ ⊆ G
}



Example: Selection of contiguous patterns

The nonzero patterns are all the segments



Example: Selection of rectangles

The nonzero patterns are all the rectangles



Example: Hierarchical structure
[Zhao et al., 2009]

• Groups in G are all the rooted subtrees
• Selection rule:

• If a node is selected, the same goes for all its ancestors
• If a node is not selected, then its descendants are not selected
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Characterization of induced patterns

Z =
{ ⋃

g∈G′

g ; G′ ⊆ G
}

and N =
{ ⋂

g∈G′

g c ; G′ ⊆ G
}

• Set of zero patterns Z closed under union

• Set of nonzero patterns N closed under intersection

• Relation between G and Z, N ?

• From G to Z:
• Union closure of G

• From (union-closed) Z to (minimal) G:
• Procedure from set theory [Doignon and Falmagne, 1998]
• Automatic norm design
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Some theoretical properties

min
w∈Rp

[1

n

n∑

i=1

l(yi ,w
⊤xi ) + λΩ(w)

]

(∗)

• Supervised setting
•

{
(xi , yi ) ∈ R

p × R
}

i∈J1;nK
, (input, output) data points

• loss function l , convex, C 2

• Zero patterns:

• Solutions of (∗) have zero patterns in Z =
{
⋃

g∈G′g ; G′ ⊆ G
}

• Support recovery for least-squares regression:
• For ℓ1 [Zhao and Yu, 2006] and group Lasso [Bach, 2008]
• Low- and high-dimensional settings



Related approaches to structured sparsity

• Convex approaches

• Union-closed nonzero patterns [Jacob et al., 2009]
• Via convex cones [Micchelli et al., 2010]

• Submodular approaches

• Set-functions based on supports and level-sets [Bach, 2010a,b]

• Non-convex approaches

• Information-theoretic criterion [Haupt and Nowak, 2006;
Huang et al., 2009]

• Union of supports [Baraniuk et al., 2010]

• Bayesian approaches

• Hierarchical wavelet model [He and Carin, 2009]



Part II

Optimization for sparsity-inducing norms:
The case of tree-structured groups



Which optimization tools?
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w∈Rp

[

f (w) + λΩ(w)
]

• f convex, differentiable, Lipschitz-continuous gradient

• Ω convex, but nonsmooth

• Techniques blind to composite structure:
• Subgradient descent
• Interior-point for QP, SOCP



Which optimization tools?

min
w∈Rp

[

f (w) + λΩ(w)
]

• f convex, differentiable, Lipschitz-continuous gradient

• Ω convex, but nonsmooth

• Techniques blind to composite structure:
• Subgradient descent
• Interior-point for QP, SOCP

• Techniques developed in the thesis:
• Active-set strategies
• Reweighted-ℓ2 schemes
• Proximal methods
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• Forward-backward splitting [Combettes and Pesquet, 2010]

• At iteration k , update rule
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• At iteration k , update rule

w(k+1) ← argmin
w∈Rp

[

f (w(k)) +∇f (w(k))⊤(w −w(k)) +
L

2
‖w(k) −w‖22 + λΩ(w)

]
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∥
∥
∥w −

(
w(k) − 1

L
∇f (w(k))

)
∥
∥
∥

2

2
+ λΩ(w)

]

• Linearization of f at w(k)

• Proximity term, remain around w(k)

• If λ = 0, gradient update rule: w(k+1) ← w(k) − 1
L∇f (w(k))

• There are also accelerated versions [Beck and Teboulle, 2009;
Nesterov, 2007]

• Linear combination of past iterates
• Optimal convergence rates O( 1

k2 ) [Nesterov, 2004]



Key sub-problem: Proximal operator

• Idea: Ω only involved through its proximal operator:
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Key sub-problem: Proximal operator

• Idea: Ω only involved through its proximal operator:

ProxλΩ : u 7→ argmin
w∈Rp

[1

2
‖w − u‖22 + λΩ(w)

]

• Has to be solved efficiently and exactly [or with arbitrary
precision, Schmidt et al., 2011]

• For ℓ1-norm, soft-thresholding [Donoho and Johnstone, 1995]:

[

Proxλ‖.‖1(u)
]

j
= sign(uj)max{0, |uj | − λ}

• Also simple expressions for ℓ2- and ℓ∞-norms

• When Ω has overlapping groups, no closed-form available. . .



Tree-structured set of groups

• Tree-structured set of groups G:

For any g , h ∈ G,
[

g ∩ h 6= ∅

]

⇒
[

g ⊆ h or h ⊆ g
]



Proximal operator for tree-structured G

ProxλΩ : u 7→ argmin
w∈Rp

[1

2
‖w−u‖22+λ

∑

g∈G

‖wg‖q
]

for q ∈ {2,∞}



Proximal operator for tree-structured G

ProxλΩ : u 7→ argmin
w∈Rp

[1

2
‖w−u‖22+λ

∑

g∈G

‖wg‖q
]

for q ∈ {2,∞}

• Consider

Proxg : u 7→ argmin
w∈Rp

[1

2
‖w− u‖22 + λ‖wg‖q

]

for q ∈ {2,∞}



Proximal operator for tree-structured G

ProxλΩ : u 7→ argmin
w∈Rp

[1

2
‖w−u‖22+λ

∑

g∈G

‖wg‖q
]

for q ∈ {2,∞}

• Consider

Proxg : u 7→ argmin
w∈Rp

[1

2
‖w− u‖22 + λ‖wg‖q

]

for q ∈ {2,∞}

• Assume G = {g1, . . . , g|G|} ordered according to

g � h⇒
[

g ⊆ h or g ∩ h = ∅

]

(“leaves up to the root”)



Proximal operator for tree-structured G

ProxλΩ : u 7→ argmin
w∈Rp

[1

2
‖w−u‖22+λ

∑

g∈G

‖wg‖q
]

for q ∈ {2,∞}

• Consider

Proxg : u 7→ argmin
w∈Rp

[1

2
‖w− u‖22 + λ‖wg‖q

]

for q ∈ {2,∞}

• Assume G = {g1, . . . , g|G|} ordered according to

g � h⇒
[

g ⊆ h or g ∩ h = ∅

]

(“leaves up to the root”)

Proposition (composition of prox)

ProxλΩ = Proxg|G|
◦ · · · ◦ Proxg1

With careful implementation, complexity linear O(p) when q = 2.



Extensions

• General overlapping groups for ℓ1/ℓ∞-norms
• Mairal, Jenatton, Obozinski, and Bach [2011]
• Connections with network flow problems
• Conic duality + divide-and-conquer strategy



Part III
Some applications to dictionary learning



Dictionary learning in a nutshell

• Data: n signals, X = [x1, . . . , xn] ∈ R
m×n

• Dictionary: p atoms, D = [d1, . . . ,dp] ∈ R
m×p

• Decomposition: A = [α1, . . . ,αn] ∈ R
p×n

• Goal:

X ≈ DA

• Applied to various settings and classes of signals
• Neuroscience [Olshausen and Field, 1997]
• Image processing/Computer vision [Elad and Aharon, 2006;

Peyré, 2009; Mairal, 2010]
• Audio processing [Sprechmann et al., 2010; Lefèvre et al.,

2011]
• Topic modeling [Jenatton et al., 2011]
• . . .



Dictionary learning and structured sparsity

• Mainly, two settings
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• Mainly, two settings

• Regularization over D: Ω
(
dj
)
, for j ∈ J1; pK

• Sparse structured dictionary elements
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(
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i
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• Each signal uses few atoms, sparse decomposition
• Induced effect on D
• Atoms organize and adapt to match the structure of Ω



Dictionary learning and structured sparsity

• Regularization over A: Ω
(
α

i
)
, for i ∈ J1; nK

• Each signal uses few atoms, sparse decomposition
• Induced effect on D
• Atoms organize and adapt to match the structure of Ω

Example, the hierarchical case:

min
A∈Rp×n,D∈D

1

n

n∑

i=1

[1

2
‖xi −Dα

i‖22 + λΩhierarchical(α
i )
]



Learned dictionary of natural image
patches

• Graph structure imposed by Ω
• Each patch at a node represents an atom



Part IV
Application to neuroimaging



Structured sparsity for neuroimaging

• Supervised problem

• x ∈ R
p fMRI signal, with p ≈ 70 000 voxels

• y sizes of objects

• Goal: Predict y from brain activation-map x, across subjects

fMRI signal x

Predict−−−−−→

Size y of the object?



Structured sparsity for neuroimaging

• Supervised problem

• x ∈ R
p fMRI signal, with p ≈ 70 000 voxels

• y sizes of objects

• Goal: Predict y from brain activation-map x, across subjects
• Some properties:

• High-dimensional problem, only n ≈ 100
• A few voxels are useful to predict y (sparsity)
• Relevant voxels appear as spatially-localized patterns
• Across subjects, voxel-based predictions not reliable:

• Misalignement issue



Proposed approach

• Instead of single voxels, consider local averages: parcels
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Proposed approach

• Instead of single voxels, consider local averages: parcels

• Build a multi-scale representation of the data:
• Ward’s hierarchical clustering + spatial constraints
• Leaves of the tree: single voxels
• Root of the tree: all voxels
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The new representation of the signals

• Original signal
xold = [xvoxel1, xvoxel2, xvoxel3] ∈ R

3

• New signal representation

xnew = [xold, xparcel1, xparcel2] ∈ R
5

with
{

xparcel1 = mean(xvoxel1, xvoxel2, xvoxel3)

xparcel2 = mean(xvoxel1, xvoxel2)

Reminiscent of spatial pyramid from Lazebnik et al. [2006]



How to exploit the new representation?

• xnew = [xold, xparcel1, xparcel2] ∈ R
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• Assume linear models: w⊤xnew

• Idea: The closer to the leaves, the less
reliable across subjects

• First select wj near the root
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How to exploit the new representation?

• xnew = [xold, xparcel1, xparcel2] ∈ R
5

• Assume linear models: w⊤xnew

• Idea: The closer to the leaves, the less
reliable across subjects

• First select wj near the root

• ℓ1-norm would not distinguish between parcels/voxels

• We use a hierarchical sparsity-inducing norm
• Cannot select a voxel without selecting ancestral parcels
• If a parcel is zeroed out, the same goes for all its descendants



Regression results

Loss function: Square

Error (mean,std) P-value w.r.t. Tree ℓ2
Regularization:

ℓ2 (Ridge) (13.8, 7.6) 0.096

ℓ1 (20.2, 10.9) 0.013∗

ℓ1 + ℓ2 (Elastic net) (14.4, 8.8) 0.065

Reweighted ℓ1 (18.8, 14.6) 0.052

ℓ1 (augmented space) (14.2, 7.9) 0.096

ℓ1 (tree weights) (13.9, 7.9) 0.032∗

Tree ℓ2 (11.8, 6.7) -

Tree ℓ∞ (12.8, 6.7) 0.137

Greedy [Michel et al., 2010] (12.0, 5.5) 0.5



Classification results

Loss function: Multinomial logistic

Error (mean,std) P-value w.r.t. Tree ℓ2
Regularization:

ℓ2 (Ridge) (24.2, 9.2) 0.035∗

ℓ1 (25.8, 12.0) 0.004∗

ℓ1/ℓ2 (Multi-task) (26.7, 7.6) 0.007∗

ℓ1/ℓ∞ (Multi-task) (26.7, 11.6) 0.002∗

Tree ℓ2 (16.7, 10.4) -

Tree ℓ∞ (22.5, 13.0) 0.156

Greedy [Michel et al., 2010] (21.6, 14.5) 0.001∗



Neuroimaging conclusions

• Best prediction accuracy

• Multi-scale representation
• Robust to misalignment
• Adapted to the spatial encoding of brain activations

• Explored in a convex way
• No initialization issue
• Minimum guarantee

• Improve supervised learning from brain imaging data:
• fMRI decoding like shown here
• Ability to classify patients vs. controls for diagnosis purposes



Conclusions and take-home messages

• Structured sparsity via convex tools

• Structure ⇔ Constraints on possible sparsity patterns

• Plain and structured sparsity for the same computational cost!

• Different scenarios where structured sparsity applies:
• Fixed dictionary with preprocessing to match Ω

-e.g., neuroimaging with hierarchical clustering
• Dictionary learning with learned atoms matching Ω

-e.g., tree of image patches

• Connections between:
• Sparse structured dictionary learning
• Non-parametric Bayesian techniques



Perspectives and future work

• Deeper statistical analysis
• Quantify statistical gain w.r.t. ℓ1-norm
• E.g., Negahban et al. [2009]; Maurer and Pontil [2011]

• Understand the role of regularizers in dictionary learning
• Risk analysis [Maurer and Pontil, 2010]
• Identifiability questions [Gribonval and Schnass, 2010]

• Monitor better the optimization in dictionary learning

• Further validate structured sparsity in NLP
• Structures are plentiful [Martins et al., 2011]



Thank you all for your attention
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Part V
Appendix



Consistency, “p < n” setting

min
w∈Rp

[1

n

n∑

i=1

(yi −w⊤xi )
2 + λΩ(w)

]

• Fixed-design model: y = x⊤w̄ + ε

• limn→∞
1
n

∑n
i=1 xix

⊤
i = Q̄ ≻ 0

• Goal: Recover J̄ = {j ∈ J1; pK; w̄j 6= 0} by its estimate Ĵ:

P(Ĵ = J̄) −→
n→+∞

1 (∗)
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[Zhao and Yu, 2006]
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Proposition

If λ→ 0, λ
√
n→ +∞, then if θstruct < 1, then (∗).

Conversely, if (∗), then θstruct ≤ 1.



Formal characterization of zero patterns
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min
w∈Rp

[1

n

n∑

i=1

l(yi ,w
⊤xi ) + λΩ(w)

]

(∗)

•
{
(xi , yi ) ∈ R

p × R
}

i∈J1;nK
, (input, output) data points

• X =

(
x⊤1
.
x⊤n

)

∈ R
n×p fixed, {yi}i∈J1;nK random (with a density)

• Loss function, l : (y , y ′) 7→ l(y , y ′) convex, C 2, with

•
∂2l(y ,y ′)
∂y∂y ′

6= 0 and ∂2l(y ,y ′)
∂2y ′

> 0

Proposition

Let k be the column rank of X.
Any solution of (∗) with at most k − 1 nonzero entries has almost
surely its zero pattern in

Z =
{ ⋃

g∈G′

g ; G′ ⊆ G
}

.



Benchmark: Denoising of image patches
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Figure: Sparsity level increasing from left to right.

• Small scale: Dictionary in R
256×151

• Solved thousands of times in inner loop for dictionary learning



Hierarchical topic models
• NIPS proceedings (1714 documents, 8274 words).
• Each document is modeled through word frequencies.
• Alternative to probabilistic topic models [Blei et al., 2010].


