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ML systems are being deployed in many applications, e.g., 

● Conversational dialog systems, voice assistants, navigation systems

● Automatic content moderation [Link et al., 2016; Jhaver et al., 2019]

Those applications can be in safety-critical areas : 

● Health applications [Miotto et al., 2016; Rajkomar et al., 2018; Liu et al., 2020; Mckinney et al., 2020;...]

● Self-driving cars [Levinson et al., 2011; Sun et al., 2018]

● Risk assessments [Green et al., 2019]

● Automate decisions about benefit claims & welfare issues (e.g., the Guardian, 2019)

Context and motivation

https://www.theguardian.com/society/2019/oct/15/councils-using-algorithms-make-welfare-decisions-benefits
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In those critical applications, we need robust uncertainty estimation
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In those critical applications, we need robust uncertainty estimation

Why? 

● Knowing when to trust model’s predictions, e.g., under dataset shift

● Better decision making, e.g., with asymmetric costs

● Active learning: Getting more data in regions where the model is uncertain

● Open set recognition 

● Lifelong learning 

● Exploration in reinforcement learning, Bayesian optimization, ...

Context and motivation
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Dataset shift across:

Image source: Hendrycks et al. 2020 “The Many Faces of Robustness: 
A Critical Analysis of Out-of-Distribution Generalization”

Application example (1/3)

● Time
● Countries

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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Application example (2/3)

Conversational dialog systems
● Detecting out-of-scope utterances

Image source: Larson et al. 2019 “An Evaluation Dataset for Intent 
Classification and Out-of-Scope Prediction”

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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● Model uncertainty to decide when to trust model vs. when to defer to human

Diabetic retinopathy detection from fundus images 
Gulshan et al, 2016 

Eye disease classification from 3D OCT images
de Fauw et al, 2018

Application example (3/3)

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

https://jamanetwork.com/journals/jama/fullarticle/2588763
https://www.nature.com/articles/s41591-018-0107-6
http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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But what about the behavior of modern neural networks?
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Models accuracy degrades under dataset shift

● Accuracy drops with 
increasing shift on 
Imagenet-C

Image source: Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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Models accuracy degrades under dataset shift

● Accuracy drops with 
increasing shift on 
Imagenet-C

● But do the models 
know that they are 
less accurate?

Image source: Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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Models are not calibrated under dataset shift

● Accuracy drops with 
increasing shift on 
Imagenet-C

● Calibration degrades 
with shift: 
“overconfident  
mistakes”

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation
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● Evaluation 
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Various mechanisms:

● Data augmentation [Hendrycks et al., 2019; Yin et al., 2019; Thulasidasan et al., 2019]

● Architectures [Nado et al., 2020]

● Loss functions [Muller et al., 2019; Meinke et al., 2019]

● Generative models [Nalisnick et al., 2019; Ren et al., 2019]

Many approaches to capture uncertainty
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● Loss functions [Muller et al., 2019; Meinke et al., 2019]
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Many approaches to capture uncertainty

“Ensembles”: Generate a set of diverse members

● Bayesian NNs [Hinton et al., 1993; Neal, 1995; MacKay et al., 1995; Barber et al., 1998; ...; Wenzel et al. 2020]

● Long history [Hansen et al., 1990; Levin et al., 1990; Geman et al., 1992;...; Dietterich, 2000; ...]

○ Initialization, bootstraps [Lee et al., 2015; Lakshminarayanan et al., 2017]

○ Optimization [Huang et al., 2017; Loshchilov et al., 2017; Zhang et al., 2019]

○ Hyperparameters [Caruana et al., 2004; …; Feurer et al., 2015; Lévesque et al., 2016; Saikia et al. 2020]

○ Architectures [Zaidi+Zela et al., 2020; Antorán et al., 2020] 
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Idea: 

● Multiple trainings from different seeds
● Average the predictions
● Rely on 

○ Non-convexity of the objective
○ Stochasticity of initialization
○ Stochasticity of optimization

● SOTA performance [Ovadia et al., 2019; 
Gustafsson et al., 2019]

P 20

Randomly 
Initialize

Net 1

Randomly 
Initialize

Net 2

Randomly 
Initialize
 Net M

....

Randomly Shuffle Dataset M times

Combine predictions of M models

Inputs
Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

Deep ensemble [Lakshminarayanan et al. 2017]

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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Ensemble predictionsSingle model predictions

Classe 1

Classe 2
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Deep ensembles are consistently among the best performing methods, especially under dataset shift

Credits: slide from B. Lakshminarayanan, D. Tran, J. Snoek “Uncertainty and Out-of-Distribution Robustness in Deep Learning”

Deep ensembles work surprisingly well in practice 

http://www.gatsby.ucl.ac.uk/~balaji/DL4Sci-Uncertainty-in-Deep-Learning-overview.pdf
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● Show the importance of ensembling HPs for uncertainty modelling 

● Comparison: deep ensemble vs. hyper-deep ensemble

● Simple algorithmic scheme (& little compute overhead)

Our contribution (part 1)

Goal: Leverage diversity from both initializations and hyperparameters 
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluations 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluations 
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● Random search: Set of models with different hyperparameters

● Greedy selection: Sequentially add model minimizing ens. loss 

Hyper-deep ensembles
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Two simple ingredients

● Random search: Set of models with different hyperparameters

● Greedy selection: Sequentially add model minimizing ens. loss 

Hyper-deep ensembles
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Construction of hyper-deep ensembles
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Construction of hyper-deep ensembles
(A) Construct one “row” from random search + greedy
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(A) Construct one “row” from random search + greedy

(B) Tile “row” for different initializations

Construction of hyper-deep ensembles



32

(A) Construct one “row” from random search + greedy

(B) Tile “row” for different initializations (C) Extract final ensemble with greedy 

Construction of hyper-deep ensembles
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(A) Construct one “row” from random search + greedy

(B) Tile “row” for different initializations (C) Extract final ensemble with greedy 

Construction of hyper-deep ensembles

Concurrent work with similar construction [Zaidi+Zela et al., 2020]
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Why not simply a top-K selection? [Saikia et al. 2020]

Unlike greedy, top-K is not informed by the ensemble performance
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation 
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Settings

Small-scale experiments:

● Hyperparameters: layer-wise L2, dropout

● MLP/LeNet over CIFAR-100, Fashion MNIST

Larg(er)-scale experiments:

● Hyperparameters: block-wise L2, label smoothing

● ResNet-20 and Wide ResNet-28-10 over CIFAR-10, CIFAR-100

● Initial random search with 100 models
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Results CIFAR-10

ResNet 20

W. ResNet 28-10



Diversity [Fort et al. 2019]

mean prediction disagreement
                1 - accuracy
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Results CIFAR-10

ResNet 20

W. ResNet 28-10
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Results CIFAR-100

ResNet 20

W. ResNet 28-10



Results CIFAR-100



Overall cost comparison

Deep ensembles Hyper-deep ensembles

Training cost O(K) O(K2) + Costrandom search

Prediction cost Same

Memory cost Same
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Overall cost comparison

Deep ensembles Hyper-deep ensembles

Training cost O(K) O(K2) + Costrandom search

Prediction cost Same

Memory cost Same

“Tuning cost” Cost’random search 0

Total cost
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation 



45

Limitations of (hyper-)deep ensembles

For (hyper-)deep ensembles:

● Training scales linearly with number of members

● Storage scales linearly with number of members

● Prediction scales linearly with number of members  
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Limitations of (hyper-)deep ensembles



47

Limitations of (hyper-)deep ensembles
Effi

ci
en

t 
ex

te
ns

io
ns

 o
f 

d
ee

p
 e

ns
em

b
le

s:
●

Ba
tc

h 
en

se
m

bl
e 

[W
en

 e
t a

l.,
 2

0
19

]
●

ra
nk

-1
 B

N
N

 [D
us

en
be

rr
y 

et
 a

l.,
 2

0
20

]



48

Limitations of (hyper-)deep ensembles
Effi

ci
en

t 
ex

te
ns

io
ns

 o
f 

d
ee

p
 e

ns
em

b
le

s:
●

Ba
tc

h 
en

se
m

bl
e 

[W
en

 e
t a

l.,
 2

0
19

]
●

ra
nk

-1
 B

N
N

 [D
us

en
be

rr
y 

et
 a

l.,
 2

0
20

]

???



49

● Efficient ensemble defined over different hyperparameters 

● Introduce layer structure composing

○ Batch ensemble

○ Self-tuning network

● Ensemble members & their HPs are learned end-to-end in a single training

Our contribution (part 2)

Goal: 
● Exploit insights of hyper-deep ensemble…
● ...But make it more efficient! 
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation 



Batch ensemble [Wen et al., 2019]:

● Tie parameters across members: Instead of

51

1-slide summary about batch ensemble

shared per member



Batch ensemble [Wen et al., 2019]:

● Tie parameters across members: Instead of

● Save parameters

● Fast prediction thanks to vectorization:

● (similar for conv. layers) 52

1-slide summary about batch ensemble

shared per member
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation 



Main idea:

● Can you track how the parameters of your model change w.r.t. HPs?

54

2-slide summary about self-tuning networks [MacKay et al. 2019] 
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Main idea:

● Can you track how the parameters of your model change w.r.t. HPs?

● Assume you can approximate the mapping from HPs to the solution

● With a single training, we could recover the entire set of solutions! 57

2-slide summary about self-tuning networks [MacKay et al. 2019] 

solution solution

(to be defined)



Inner workings of self-tuning networks:

● Changes captured layer-wise, by shifting & scaling the units:
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2-slide summary about self-tuning networks [MacKay et al. 2019] 

Standard parameters Embedding of HPs
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● Changes captured layer-wise, by shifting & scaling the units:
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60
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2-slide summary about self-tuning networks [MacKay et al. 2019] 

Standard parameters Embedding of HPs
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● Validation step
● Keep        fixed
● Update

Inner workings of self-tuning networks:

● Changes captured layer-wise, by shifting & scaling the units:

● Alternating optimization:
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2-slide summary about self-tuning networks [MacKay et al. 2019] 

Standard parameters Embedding of HPs

● Training step
● Update        
● Keep       fixed
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation 



Composite layer structure:

● Batch ensemble
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Hyper-batch ensemble (1/3)
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Hyper-batch ensemble (1/3)

Model vicinity of single HP



Composite layer structure:

● Batch ensemble

● Self-tuning network

● Hyper-batch ensemble

66

Hyper-batch ensemble (1/3)

Model vicinity of single HP

Model vicinity of        HPs

 → Preserves memory compactness & efficient vectorization



Hyper-batch ensemble (2/3)

One HP distribution per ensemble member:



Hyper-batch ensemble (2/3)

One HP distribution per ensemble member:

● Which choice for                    ?
○ Log-uniform parametrized by bounds
○ Popular choice for positive HPs [Bergstra et al., 2011-12]



Ensemble predictions:

Hyper-batch ensemble (3/3)

Individual member logits

. . . softmax(       ) 

Ensemble output
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Outline of the talk

Hyper-deep ensemble
● From deep ensemble to hyper-deep ensemble
● Construction
● Evaluation 

Hyper-batch ensemble
● Two key ingredients:

○ Batch ensemble
○ Self-tuning networks

● Layer structure & end-to-end ensemble training
● Evaluation 
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Results CIFAR-10

ResNet 20

W. ResNet 28-10
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Results CIFAR-100

ResNet 20

W. ResNet 28-10
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Results on corrupted data

W. ResNet 28-10 on CIFAR-10 Corruptions [Hendrycks et al., 2019]

Shift intensity Typically better “worst” accuracy
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Results on corrupted data

W. ResNet 28-10 on CIFAR-10 Corruptions [Hendrycks et al., 2019]

Typically better “worst” ECE
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Thank you!

● Beyond continuous hyperparameters?
● Make the approach more “turnkey” 
● What other types of diversity matter?
● Diversity           performance [Masegosa, 2019]

● Open source code: 
○ Experiments in uncertainty baselines
○ Generic layer code in edward2

● Paper on Arxiv

https://github.com/google/uncertainty-baselines/tree/master/baselines/cifar
https://github.com/google/edward2/tree/master/edward2/tensorflow/layers
https://arxiv.org/pdf/2006.13570.pdf
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Additional results


